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A

ON TWO-SIDED CONFIDENCE AND TOLERANCE LIMITS
FOR NORMAL DISTRIBUTIONS

I, INTRODUCTION

In many cases of statistical inference it is more
meaningful and informative to construct confidence intervala
for parameters under investigation rather than to make tests
of hypotheses. This requires some understanding of the con-
cept of confidence intervals, Coupled with the under-
standing of confidence intervals is the understanding of

tolerance limits, Frequently one finds that confidence

limits are used when tolerance limits should be used, or
confidence limits are computed with the general interpreta-
tion of tolerance limits.

In this report confidence limits and two types of
tolerance limits are described for normal distributions
giving some theoremsg on which the concept and construction
of these limits are based, Differences and similarities be-
tween the three types of limits are pointed out. Procedures
are presented for computing two-sided confidence and toler-
ance limits for means and for simple linear regression data
(simultaneous and non-simultaneous limits for each type).
For comparative purposes, the six different types of limits
are computed on a numerical regression problem,

Finally, an additional bibliography is included for
reference on confidence and tolerance limits when infor-

mation other than what is given in the paper is desired,
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II. CONFIDENCE LIMITS

Suppose a random sample of n observations (YI’YZ""’
Yn) i8s drawn from a normal population in an attempt to ob~
tain some information about the mean of the population, u.
A point estimate of the narameter y is the sample mean, Y.
Although the estimate is unbiased it is not very meaningful
without some measure of the possible error. Thus, frequently
one determines an upper and a lower limit or a confidence
interval which is rather certain to contain u.

The general method of construction of confidence
limits is as follows (4). Suppose one has a family of pop-
ulations each with a known density function p(y:p), y being
the random variable and p the parameter in question. Sup-
pose one has an estimator g to estimate g, where g is a
function of the observed y, and suppose that one can derive
the density function of g, p(g:p). Now if one assumes that
v equals some particular value, say ', then this value can
be inserted and the density function p(g:p'), the distribu-
tion of g under this assumption, can be obtained.

Under the assumption ¢ = ', there will be a Py point
for the distribution of g, say 81’ which will be determined
by

’ 81 '
Pt[sSSIw =CPJ’-‘ f_ p(gw') dg = P,.

Likewise, under the same assumption there will be a P2 point




for the distribution of g, say gz,determined by

Pr[g 2 8, ==cp']= fp(g:qo') dg = 1-P, . (2.1)
&2
The area under the density function below 32 is equal to P2,
and the area between 8y and 8y 1s then equal to (PZ'PI) =
Y, say.

Now, if the value of ¢' is changed, the corresponding
values of 8, and 8, are changed. Therefore 8y and 8, can be
regarded as functions of p, say gl(m) and 3209), respectively.
In principle, one can plot these functions glﬁp) and 320»)
against ¢ (see Figure 1).

Now assume that the true value of 3 is actually Po-
Then ngy) and gzcm) take the values glcmo) and gcho), re-
spectively, and Pr[g < glﬁpo)J = Py, Pr[g > gcho)] = 1-Py,
which imply

Pr[sl(wo) <g< 32(%)]= Py=Py = v. (2.2)

Now suppose that a sample observation was taken and that a
numerical value of the estimate, say g,, was computed. Then,
in Figure 1, a horizontal line can be drawn parallel to the
¢ axis through the point 8, on the g axis, Let this line
intercept the two curves SZCV) and glﬁp) at points A and B,

Project the points A and B on to the ¢ axis to give‘g and .

One asserts that a (P2-P1) confidence interval for ¢ is
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Figure 1, Plot of gl(cp) and gz(cp) Against p for the General

Method of Construction of Confidence Limits,




(_?’5), i.e.
Prlo <o <& = P)=P =Y. (2.3)

The justification for this assertion is as follows. Enter
the true value of %, OD the ¢ axis; erect the perpendicular
at this point to cut the curves glcy) at C and ngp) at D.
At both these points ¢ has the values o5 89 at C, z =
g, &,), and, at D, g = g9 (p,). The horizontal lines through
C and D will intersect the g axis at gl(wo) and gzﬁpo), re-
spectively. Now 9, may be anywhere on the p axis, but if AB
intersects CD, then g, mMust lie in the interval (glﬁpo),
320@0)) and simultaneously the interval QE'E) must include
Py- In other words, the two statements

(1) g lies in the interval (51(¢°), ngpo)),
and

(i1) the interval Q?,E) includes o,
are always true simultaneously or not true simultaneously.
But by (2.2) the event (i) has probability (PZ'PI); so the
event (ii) must also have probability (Pz-Pl). Hence one can

write

Pr(e <@, <3| = Py<Py =

and this completes the justification of (2.3).
At the point A, the function g,(y) has ¢ = ¢ and takes

on the value go,i.eq gzﬁp) = 8- Now gch) was defined as




the solution of (2.1), so one can use this equation to find E

ps ¢ 1s obtained by solving

fp(&kp) dg = 1-P, = Pr[g 2 8o = 9] i
|
]

8o

Similarly, at the point B, the function glcp) has ¢ = p and
takes the value 8,3 80 3105) =g and p can be found as the
solution f
! %o
-/f p(gip) dg = Pl = PT[S < 80; = w]

-00

To determine, for instance, confidence intervals for
the population mean ., one must seek a random variable which
depends on ., no other unknown parameters, and the sample
random variables, whose distribution is known. For the

normally distributed varlable with ¢ unknown the quantity

_ (Y-u )W/

1
8

is such a random variable having Student's-~t distribution

with n-1 degrees of freedom (df), where

Il 249

nt Y <(3z v)?

j=1 1 i= i
n(n-1)

‘2 being an unblased estimate of 02.
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Before proceeding with the derivation of the confi-
dence interval, we shall recall the definition of Student's-
t distribution (5). A random variable has Student's-~t dis-
tribution with n-1 df if it has the same distribution as the
quotient (u/n-1)/v, where u and v are independent random
variables, u having a normal distribution with mean O and
standard deviation 1, and vZ2 having a chi-square (x2) distri-
bution with n-1 df. More precisely, ((Y-p)Jyn)/c is normally
distributed with mean 0 and variance 1, and 32/02 is distri-
buted (independently) as y2/n-1 with n-1 df,

From tables of the Student's-t distribution one de-

termines two percentiles, €(1-y)/2,n-1 and t(14y)/2,n-1 *
’ ’

such that®
E(14y)/2,n-1
P”[t(l-v)/z,n-1<t<f(1+y)/z,n.1]= f(t,n-1) dt = y
E(1-y)/2,n-1
where ) f%
@) +E)

f(t,n-1) =

SED((E5)

*In hypothesis testing one rejects the hypothesis that y =
. if t falls outside this interval where the alternate
h?pothesis is that , # Moo This represents a test of size
l-Y .




Or, more precisely,

(Yo )VR0
*(1-y)/2,n-1 < s < t(1+y)/2,n-1.]= \

Pe
This inequality is then converted to

Pl € (1) 2,me 2S4S TRy 2,0 BT Y @0

This interval,a confidence interval for j, is given in most
standard statistical texts (16). Owing to the fact that
Student's~t distribution is symmetric, t(l-y)/Z,n-l =
't(1+y)/2,n-1' This fact will be used throughout the re-
mainder of the paper.

For the case where o is known one can use (2.4) for
the computation of the confidence interval by simply re-
placing s by ¢ and using for df = o, t(1+Y)/2,“ = Z(1+Y)/2,
the (1+y)/2 normal deviate, since Student's-t distribution
approaches the normal distribution for large degrees of free-
dom,

The interpretation of confidence limits is as follows.
If many samples of size n were drawn from the same popula-
tion and 100yY% upper and lower limits were determined from
each sample, then one would expect 100yY% of these "random
intervals" to cover the pojnt, u. Or, if an experimenter as-

serts a priori that an interval includes the parameter, .,

it e ke Ml sameal N




he should be making a correct statement 100y% of the time.
In practice, one usually has only one sample from which to
determine an interval eatimate.

One should remember in the above discussion and
throughout the rest of the paper, that upper and lower
limits are computed but that frequently it is more conven-
ient to speak of the jnterval formed by the limits,

Moment generating functions may be used to show that
a linearly transformed normal random variable is normally
distributed and that any linear combination of independent
normal random variables has a normal distribution (5). The
following general procedure (Procedure A) may then be used
for the computation of confidence limits on any parameter

or linear function of parameters g from normal populations

[e.g. P T, p = “1-“2 or p = B*]:

Procedure A

1. Obtain an estimator g of ¢

e.g. & = ?, g = ?1-§2, or g = b**

*population regreasion coefficient

** B Y, - (EX)(ZYy)/n Sxy
b= =

2 _ 2 2
zxi (zxi) /n Sx

where T =

n~Ms

i=1




Obtain the variance of g and write it in the form

oZ/n'
- R 2 2
e.g. var Y = 02/n, var(Y,-Y,) =(d + &) 0%,
1 "2 nl n2
or var(b) = 02/sx2
Obtain an unbiased estimate of 02 (usually ealied 82)

e.g. 2 ’
sz - @?/n sy

8 = nel = nel

2
Sy{ + 8y,

nl-mz-Z

2 _ Sy? - (sxy)?/sx2
n-2

Confidence interval estimate for cp***=

+ ]

8 £ E1ay)/2,e VI 8

where t(14y)/2, ¢ is the (1+Y)/2 percentage point
of Student's~t distribution with f df (in the

examples f=n-1, n +n -2, or n-2, respectively)

2

*The use of n' will be explained in the section on tolerance

limits.

**Auuming that both populations have a common 02.

*%* pemember t

(L-y)/2,£ = T2, f

. -4
USRS TP TP S S
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111, TOLERANCE LIMITS

A. General Mesnins of Tolerance Limits

Suppose a random sample of n observations (Yl,Yz,...,
Yn) is drawn from a normal population with unknown mean, .,
and unknown variance, 02, Also suppose the experimenter 1is
not interested in estimating . as a single point, nor is he
interested in finding confidence limits for . He is more
concerned about predicting individua]l future values and
would like to see limita where he can say with reasonable
assurance that most of his future values will fall within,
If he constructed these limits, which one calls tolerance
limits, on his control data (normal range), then individual
values falling outside these limits could be considered as
being "abnormal" with a reasonable level of confidence.

Before proceeding to the details of two different
types of tolerance limits, the following remarks are made
to give the reader a better understanding of the general
nature of the limits. For the moment, consider a normally
distributed population with a known population mean, u, and
a known population varilance, 02, One finds the two-sided
tolerance limits which include 10NP% of the poﬁulation as

u=~20 and u+Z20 since




L - e - A
- ———

u+Zo
p(x) dx = P »’

p=20

where p(x) represents the density function of the normal

distribution and Z is a numerical value which depends on the

chosen value of P, Since the population parameters are

known, the above statement can be made with 100% confidence,
and one hardly has a statistical problem. For example, one
is 100% confident that the tolerance limits, u + 1.960, con=-
tain the central 95% of the normal population,

Usually the parameters . and 62 are not known, only
the estimates Y and g2, If u and o are replaced by Y and s

one would get % + 1,968 as limits in the above example. In

YRr

repeated sampling from the same population these limits

would vary about the population tolerance limits, . + 1.960,
and for some samples the limits would include less than 95%
of the population and for other samples more than 95%. To
be reasonably sure that 100P% of the population lie between
the sample tolerance limits one must find a value k>Z such
that there is a good chance that Y + ks will include 100P%
of the population.
Two types of tolerance limits will be discussed:

tolerance limits without confidence probability [(P)T#L and

tolerance limits with confidence probability [(P,Y)TL].

16




The problem here is to determine k so that for re~

peated samples of size n the gverage proportion in ?1 + ksi ,
&

(1=1,2,...) is equal to P. Wilks (20) first determined such

a k, but the proof given in this paper is the prcof by I.R.
Savage found in an article by Proschan (14).

Let us consider as tolerance limits Ll and L2 the
quantities Y + ks (two-sided limits). The proportion P' of 1

] the normal population between these limits is

§+ks
p' = 1 e~ (Y- )2/202 ay
o -
Jﬁ Y=ks

We wish to determine k so that E(P') = P, where

f#f(?,s) ds 4y

0

E(P') =

§ s

and f(G;s) is the distribution of Y and s given by

Jn (n-l)(n°1)/2 g"~2 e'[n(i;u)2+(n-1)sz]/202

2¥.1 ot Jm ["(Eil)

Using the linear transformation, Z = (Y-u)/o, E(P') can be

written as

= A e —

B} B N .
i Pitemmat. 2%k ke B e Al




© w  Y+ks ;

g(p') = <, ‘/- Jr 522/2 az sh=2 e-[n?2+(n-1)32]/2d§ ds ;

0 = 7 Y-ks

— (n-1)/2
where c, = /n_(n-1) (free of k).
n 1 1

VIR 22 oM R [zl

The conditions for differentiating under the integral hold

and thus by Leibniz's rule one has

‘ g_iifll= cy f f [se-(§+ks)2/2+”-(§-ks)2/z] gn-2
! 0 ==
Ei o[ P16 12 45 o,
E =c [ f -l T (ka/WAF)) 24 (n-1412n/ (n1))82] /2
r ' A i

-sn-l d? ds

+c J[~d/—e[(JgiifF(ks/Jn+1))2+(n-1+kzn/(n+1))az]/2
1
0

-l

-a™ ! 47 as

Let u = [4n+1 Y + (ka/JE+1)], then




131211 =¢1‘/F J[;-uZ/Z du sn'l e-[n-1+k2n/(n+1)]sz/2 d

e-u2/2 dy gn-1 e-[n-1+k2n/(n+1)]32/2 ds
Jn+l

3
o s
8 s

AE(PY) . c gn-1 e-[n-1+k2n/(n+1)]sz/2 ds
0 !

let y = [n-1+k2n/(n+1)]82/2,

%ﬁizll cy J[;(n-2)/2 Y(n-Z)/Z e'y/[n-1+k2n/(n+1¥]n/2 dy
0

1 .
“3 [n- 1+k2 (rﬁi-)] n/Z

Hence E(P') = ¢

3[ 2¢.D_ n/Z
n-1l+k (n+1ﬂ

where k1 and k2 are to be chosen so that the integral is

equal to P. Let

t =K
n+1

19




2
so that E(P') = ¢ dt
a_lf(n-li-tz)n/2
5
2
- e dt
5 [ tZ]n/Z
14—
t1 n-1

But the integrand is essentially Student's~t dengity func-
tion with n-1 df, and when k and kz = =0 gnd +«, respective-
ly, 2(P') = 1. Hence c_ must be identical to the constant of

5
Student's-t distribution. Hence for E(P') = P it follows that

®y T Y(1-p)/2,n-1 @4 T, = T(1.p)/2 n-1+ Since Ty _pys2 o
= -c(1+P)/2,n_1, k = it(1+P)/2,n-f\/§il for tolerance limits
symmetric about Y.

The interval estimates

v \ /Eil
Yy £ t(1+P)/2,n-1 n_ %3 (3.1)

which, on the average, include 100P% of the population are
referred to as tolerance limits without confidence prob-
ability or in this paner simply as (P)TL. Thus, when many
samples of the same size are taken from the population and

a (P)TL is calculated each time (same P), these intervals
will gp the average include 100P% of the population. If the
exnerimenter asserts g priorji that an interval estimate con-

tains 100P% of the ponulation, he stands a good chance that

20
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the interval contains in the neighborhood of 100P%, but his
estimate may include considerably more or considerably less
than the desired 100P%. All one does know is that the
average of many of such interval estimates (expected value)
contains 100P% of the population.

At this point it is not easy to see how one could
generalize the above result in order to compute a (P)TL for
any variate for which there is a normally distributed es-
timate of the mean with variance o2/n' and the estimate of
the variance is independently distributed as 02y2/f with f df.
The approach one can use in generalizing the procedure will
be shown in the next section when considering the similarity

between confidence limits and (P)TL (see page 31).
c. Wit nfid e obab t

For many situations the above tolerance interval
estimate is not too useful without some measure of the
possible error associated with it., Another factor which may
disturb some experimenters about the (P)TL is that per in-
terval estimate one has little assurance of always containing
100P% or more of the population. Thus, tolerance limits
with confidence probability came into being. In this paper

these tolerance limits will be referred to as (y,P)TL, based

21




on the notation 1in (8)*.

The problem is to find that value of k in

g+ks
_(g=)?
A = ~L e 202 dg
oN2n
g-ks

such that Pr[AZP] = y. A is the proportion of the popula~-
tion actually included in a given interval, Y is the re-
quired confidence coefficient, and P is the proportion of
the population required to be included within the limits
g + ks where g is an estimate of p, the mean of the normal
population.

Wwald and Wolfowitz (17) have shown how values of
k may be determined to an extremely good approximation when
p and y are specified. They considered only the case in
which a random sample of n is drawn from a single normal
population of unknown mean and unknown variance (f = n-l).
Wallis (18) extended their results to cover any normally

distributed variable for whose mean there 18 a normally

*In(8), at least a proportion y of the population 1s asserted

to lie within the tolerance limits with confidence prob-
ability g. This notation was used in (17) and may be en=-
countered in other texts or articles.
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distributed estimate with variance 02/n' (Wallis called it
N') and for whose variance there is an estimate independently
distributed as azlef (f not necessarily equal to n-1 where

n is the sample size for estimating the mean). The n' is

the effective number of observations; thus, the effective
number of observations for a certain statistic whicn when
divided into the variance of an observation, gives the
variance of the statistic.

Wallis summarized the Wald-Wolfuwitz derivation of
tolerance factors without assuming anv connecition between n'
and £, and the following is based on his summary,

Given a statistic g having the following character-
istics:

(i) 1t is normally distributed

(ii) Its expected value ¢ is the mean of a
normal population with unknown variance o2

(111)It has variance equal to 02/n', where n' is known,
and an independent estimate 82 of 02 is distributed
as 02y2/f with f degrees of freedom. H

The distribution of A above is clearly independent

Y

of p and o, since p merely determines the point about which
g will be distributed and the variance of s is proportional

to o, 80 without loss of generality take ¢ = 0 and ¢ = 1 in

the further computation.

Pr[A>P] depends on P, k, n' and n. To emphasize

™ ; e 2t - i,




the dependence on P and k for given n' and n, let F(P,k) =
Pr(A>P). Also, denote the conditional probability of A's
exceeding P for a particular value of g by F(P,k|g), i.e.
F(P,k|g) = Pr[azPlg].

1f F(P,k!g) is known, then F(P,k) may be found by

forming the product

[F(P,k;g)} {/%; o-in's’ ds] ,

which represents the probability that g willlie in an in-
terval of length dg and that A will exceed P for given g.
If one integrates out g, the result is also equal to the

expectation of F(P,k'g) as follows:

F(P,k) =-\/%% .JrF(P,ktg) e‘%"'gz dg = EgF(P,klg)

F(P,k) can be approximated by expanding F(P,k|g) in a Taylor

series® at g=0 and taking expectations.

Since F(P,k/g) 1= an even function of g, its odd

derivatives are zero, and the Taylor expansion about g=0 is

sZaZF + sabaF
21382 4lagh

F(P,klg) = F(P,k|0) + + e (3.2)

with all derivatives to be evaluated at g=0,

*Wald and Wolfowitz show the validity of the Taylor expan-
sion.
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Taking expectations, F(P,k) = EF(P,k|/g) =

.2
F(P,k|0) + -1 O F, 1 2°F 4+ oo (3.3)

2n' 652 8n'2 g

since the second and fourth moments of g, which is normally
distributed with mean 0 and variance 1/n', are 1/n' and 3/n'2,
respectively.

On comparing the right hand sides of (3.2) and (3.3),
one sees that (3,2) will cecome identical with (3.3), except
for terms involving the second and higher even powers of

1/n'. Thus if one sets g = /1/n' then

F(P,k|/1/n') o F(P,k)

This means that in order to obtain F(P,k) one has

to evaluate F(P,k!J/1/n'). There is a unique value of r such
that

1//nV4r
L e g p
I T

since the left gide i1s a monotonic increasing function of r.
The r corresponds with the half length ks of an interval
centered at I/JET for which A = P,

The problem is to select k large enough, in the
light of the sampling distribution of s, to make the prob-
ability y that ks will be at least r. Thus,




ki Rt i G

F(P,k JITaT) = Pr(sar k) = Pr(x2zec? k) =y

since X% = £82/02 and here o = 1. This probability can be
evaluated from tables of the chi-square distribution, after
first finding r from tables of the normal distribution using
a trial and error method or Newton's method (19).

After P and vy are given, one solves for k in

XZ = frzlkz, where x2 is that number for which
ley,f l-y,f
Pr[xz > X2 ] = y; then k = ru where u = J£/x2 .
f ley,f l-v,f

The interpretation of these limits is as follows.
When many random samples of the same size are taken from the
normal population and a (y,P)TL is calculated each time,
then in 100y% of the cases these limits will include at
least 100P% of the population.

The following procedure (Procedure B) may be used
to compute (y,P)TL for any variate for which there is a
normally distributed estimate of the mean with variance
ozln' and an estimate of the variance independently dis-

tributed as 02y2/f with £ df:
Procedure B

l. Obtain an estimate g of the population mean

(e.g. 8=Y,8=7¥-Y)




——

Obtain var(g) and write it in the form ozln'

- - _ %
(e.g. var(Y)=(L)02, var(Y,-Y )=(1— + L—)02)

n 1 2 n,  n,
Obtain an unbiased estimate of o2(usually called

82, with f df)
Decide on reasonable values of v and P

Compute r:

2
_ 2Z(14p)/2 '3J

r =2 1+
(1+7)/2 [ 2n 264n12

from Bowker (2), where Z(1+P)/2 is the (1+4P)/2
percentage point of the standard normal dis-
tribution
Compute u:

u** = JEIXZ where X2 is that percentile

l-y,f loy,f

of the yx2-distribution with f df which will be ex-
ceeded by chance 100y% of the time.

ever the Fl-v,w,n-z should read F

%¥Assuming that both populations have a common variance o2
**Dixon and Massey (6) give JF in place of u. How-

Y y%,n=2 for the appro-

priate value from their table of percentiles of the F(L&,L&)
distributions. The n-2 is associated with the degrees of

freedom for error in their regression procedure.




7. Compute k = ru

8. (Y,P)TL = g * kysZ

Step 8 would be modified to read as g + kJsZ/m if

the experimenter were interested in (y,P)TL for future means

based on m observations each (7).

Tabular values were obtained for r and u by Weiss-
berg and Beatty (19), and their values are also given in
Owen's Handbook of Statistical Tables (12). The tabulated
values for r were prepared for a sample of size n from a
single population and are given as r ~ r(n,P). One needs
to let n = n' when using these tables.

Bowker (2) has shown that for large n' the ex-
pression Z(y,p)/9 [1 + 1/2n'} mav be used for r instead of
the expression given in Stevo 5.

Bowker (3) has tabulated values of k for the special
case where f = n-1,

Situations may arise where ; or 0 is known. In the
event that . is known and ¢ is unknown one can use the above
result as k = Z(1+P)/2 u where Z(1+P)/2 is the (1+P)/2 per-
centile point of the standard normal distribution., If o is
known and ;1 is unknown then the above result is used with «
degrees of freedom (f = «), The u will become 1, and k = r
which depends onlv on n' and P. Regardless of what level of
Y is chosen u 1s always equal to one in the case vhere o is

known.
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Iv. CLATIONSHIP BETWEEN THE VARIOUS LIMITS
A. t t t ts

Figure 2 gives an oversimplified comparison between
the confidence limits, and the tolerance limits[(P)TL and
(y,P)tq for different sample sizes. The "picture" was drawn
as simply as possible to illustrate the basic concepts, but
the following shortcomings should be realized:

1. At each sample size (except n=«), each interval is an
estimate and is not necessarily symmetric about ..

2. At each sample size (except n=»), one should visualize
many confidence interval estimates with 100v% of
them covering u, many (P)TL estimates whose average
interval covers 100P% of the population, and many
(v,P)TL with 100y% of these intervals covering at
least 100P%.

3. When o is not known, all estimates mentioned in 2
(above) will usually be of unequal length.

The (P)TL gives an estimate of the interval u + ko
in the same manner as Y gives an estimate of the point ..

The (yY,FP)TL are in nature comparable to the confidence limits
because these tolerance limits give a "confidence interval"

about an interval (including at least 100P% of the popula-

tion), while the confidence limits give a confidence interval

about a point.
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Figure 2. Oversimplified Comparison Between Confidence Limits,

(P)TL, and (v,P)TL on a Simple Mean for Different

Sample Sizes.

30




For a very large sample the confidence limits con-

verge to gne point, the parameter (see Figure 2). This can
easily be verified from the previous formulas. As sample
size and degrees of freedom increase for the normal distri-
bution the (y,P)TL and the (P)TL approach essentially two
limiting parameters with 100% confidence including the pro-

portion P of the vopulation.

B. e nfidence ts and Tolerance Limits

Leoml]

The following is based on Proschan's article, Fre~
quently, experimenters are interested in finding a prediction
(or "confidence") interval for an additional observation
from the same population. Most standard statistical texts

(16) show that

Yl—?z
t = — =
) 2 7 2
[[z Y] - (GY) /nl] + [zvz - (=Y, /n2] . L
n1+n2-2 n1 n2

is distributed as Student'!s-t with f = n1+n2-2. One may now
use this relationship to find the following prediction in-

terval for the value of one additional observation Yz(n2=1):

* n n
AlL T = z!or £l

i=1 i=1




Rl > Gar' o e
e L

P"[Yl T F(iey)/2,n -1 S #107ny 81< Vo< Yy
* S1ay)/2,ny -1 YOOy “1] =y D

where

. 2
uf - @ )?/n

1 -
n1 1

This simnly means that if pairs of samnles of size

n, and 1 for Y1 and YZ’

then 100y% of the Y2's will lie in the above interval. It

does not mean that if one sample of size n1(§1) were drawn,

respectively, are drawn repeatedly,

to be followed bv the drawing of many additional Yz'a that
100y% of these Y2's will lie in the interval,

Notice that the 100v% confidence limits for the
value of one additional observation (4.1) is the same as the
(P)TL (3.1) except for the subscript on t, remembering that
t(l-P)/Z,n-l = - t(1+P)/2,n-l . How is this confidence or
prediction interval related to the (P)TL 7 An intuitive ex-

planation of their relationship may go as follows. The

Y, + t(1+v)/2,nl-1 JA/m)+1 8, in (4.1) is an estimate of
A T)/2 .0 J1 o, and substituting, (4.1) would become
9

Pr(u~t(1+y)/2,w 0<Y2<4.1+t(1+y)/2’°° O] = vy,

This interval is fixed and contains the central 100y% of the

future Yz's from the population. Thus each (4.1) is an
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estimate of an interval which contains 100y% of the popu-
lation. However, this is the definition of (P)TL in Sec-
tion 111, replacing vy with P. Hence, confidence limits with
confidence coefficient y for a second sample of size one
are identical with tolerance limits that will include a pro-
portion P on the average.

Paulson (13) proves the following simple lemma on
the relationship between confidence limits (y) for a future
random observation and (P) tolerance limits: If confidence
limits Ul(xl,...,xn) and Uz(xl,...,xn) on a probability level
= y are determined for g, a function of a future sample of

k observations, and

)
P = f\P(S) dg,
s |

then E(P) = y. Let\VY(g) dg and t‘p(ul,uz) dU, dU, denote the

distribution of g and U U2 respectively, then by the defi-

1’
nition of expected value

00 c0 u2
E(P) = [ [’: f‘i’(g) dg b(ul,uz) dvu, dv, .
-0 w0 u]_

This triple integral is, however, exactly the probability that

g will lie between U1 and Uz, which by the nature of con-




fidence limits must equal y, which proves the lemma.
Following the procedure of computing confidence g
limits for the next observation, one can quite easily com-
pute (P)TL for any variate for which there is a normally
distributed estimate of the mean with variance ozln' and
the estimate of the variance is independently distributed
as 022/t with £ df. For example, the (P)IL for Y,-Y, when

given ny observations from the Y  population and n, ob-

1
servations from the Y2 population is obtained from

(Y. -¥,) - (Y,-Y,)
1 2 1 72 _
P‘[t(x-m/z < < ®+py/2|=F
JsZ(L +L +1+1)
"1 M2
where 32 i1s the pooled sample variance. This expression is

then rearranged as follows:

Pr[(Yl-Y2)+t(l-P)/2 J§2(§1+%é+2) < V,-Y, < (Yl'YZ)

A summary of the computing procedures for the two-
sided confidence limits and botn types of tolerance limits

on normal populations is given in Table 1.
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TABLE 1.

COMPUTATIONAL PROCEDURES OF CONFIDENCE LIMITS,

(P)TL, AND (y,P)TL FOR NORMAL POPULATIONS

Source

Parameters

Sten # 1

St b e WK 4

Step # 2

Confidence

Limits

gunknown(U)
GZU

Obtain estimate

gofcp

Dbtain var(g) =
oz/n'

g U
o2known(K)

(P)TL

Var. g + var. of

future single (2)

(v,P)TL

Obtain estimate

g of o

Obtain var(g) =

cz/n'




r*""".w—""*“-"*w—-.f- T ——— —— Sy e——— ﬁ
1
(Table 1 continued.) L
Source Parameters Step # 3 Step # 4
Confidence | punknown(U)| Obtain estimate of | Decide on
Limits o2y oZ(called s?) Y
" v U - "
o 2known(K)
(P)TL p U Obtain estimate of | Decide on
o2y 02(called s2) P
" @ u - "
oK
" v K Obtain estimate of "
alu o2(called s2)
" + K - "
02K
(y,P)TL o U Obtain estimate of Decide on
o2y oZ(called s?) y and P
" v U ) Decide on
a2k P only
| g K Obtain estimate of Decide on
a2y Oz(called s2) y and F
" v K - Decide on
02K P only
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(Table 1 continued.)

Source Parameters Step #5*
Confidence ! ,unknown(U)| Confidence interval of
= a2t
Limits o2y ¢ = BIC(1.y)/2,6Y° /n
" v U git(1+y)/2’w./027nv
czknown(K)
(P)TL o U (P)TL =
2
¢ U +t 1/n?
" 5 gt (1+P)/2,°°~/52'(‘/n + 1)
oK
w K
" +t sZ(1/n' + 1)
o2y ®= (1+p)/2,f‘/
v K
" +t 6Z(1/n' + 1
(v,P)TL U r=t '—H_],_ 2t214p1/2 3]
(1+P)/2 2n? 24(n*)2 !
02y ’ J
1] w U 1"
ozk
" ¢ K
r=1=zt
o2y (1+7)/2 ,=
v K
" [1]
o2k

* and ** see page 39
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(Table 1 continued.)

Source

Parameters

Step {6

Step #7

Step #8

Confidence

Limits

yunknown (U)

02U

o 2known (K)

(P)TL

w U

|

(v,P)TL =

gxk./sZ

g:kJ57

prkyal

okioZ

**%See page 39




(Table 1 continued.)

%* is the A percentage point of Student's-t distribu-

o\ f
tion with f df.
*k Formula as given is not always correct depending on the

¢ under consideration. See page 34.

kK xi ¢ is the percentage point of the KZ distribution
-Y’
with f df which will be exceeded by chance 100vy% of the

time,
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V. LIMITS IN STMPLE LINEAR REGRESSION

A. packground

In linear regression, Y values are obtained from
several populations, each population being determined by a
corresponding X value, The X variable is fixed or measured
without er£or. The following assumptions are usually made
about the "true" model:

1. The distribution of Y for each X is normal.
2. The mean values of Y lie exactly on the line

= o + BX.
Myax © ¢

3. The variance of Y, 02, is the same for each X,

P

4, The Y observations are statistically independent,

- —e— -

The classical "least squares" procedure is used for
"fitting"” a line which best describes the linear relation-
ship between the (xi’Yi) pairs of observations. This pro-

cedure determines values of a and b which minimize
2 2
SSh = % Y, -a=bX .
197 ( i a i)

The b for the "fitted" line is called the regression co-

efficient, and the a is called the intercept. The line is

called a regression line, and its equation is called a re-

gression equation,

40
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B. de: 8

1. DNon=simultaneous confidence limits

S

Frequently textbooks give 1N0y% confidence limits §
on the population mean of Y at a particular xo value, HY-XO'
The concept of computing confidence limits on a single
normal population is simply applied repeatedly to the Y data
at the different values of X, The intervals are not inde-
pendent of each other because they all depend on the same
regression line. These intervals will be referred to as

‘ non-gimultaneous confidence limits (intervals).

The interpretation for any one of these populations

is that if many samples of the same size were drawn from the
game population of Y's at Xb and an interval were constructed
for each sample, then one would expect 100y% of these 'ran-
dom intervals" to cover the fixed point “Y'Xo'

Procedure A for the computation of confidence limits

may be used repeatedly to compute 100y% non-simultaneous con-

fidence limits for different values of X (call the X under
consideration, xo). The procedure is given below for simple
‘linear regression problems and will be referred to as Pro-

cedure C.
Procedure C

1., Y=a+ bX , where

i . - . ] W P
aibidn Aibusne, . e A ba. kel Dol S AL ,u..._n..dn..;:.‘_.-,_:‘—j




\2
2. Var(®) = oi X‘.L + £§9:§l—]

3‘
L [P - (sxy)?/sx?
Y.X n-2

where Sy? = Y2 - (£Y)2/n

» (Xg-X)?
4, Conf.(uY.XO) =Y * t(lw)/z,f{% M } R

with £ = n-2,

If each confidence limit is considered a function of
X, then the limits define the two branches of a hyperbola

with the fitted line as the diameter., The interval has mini-

mum length for X = i, and its length increases as |(X-i)\

! increases.

all = =

ne1s




2., Simultaneous confidence limits

As mentioned before, repeated use of the non-simul-
taneous confidence limits would result in error because of
the lack of independence of the intervals. In 1929, Working
and Hotelling (22) worked out a procedure whereby they found
a confidence regjion for an entire regression line. They
computed a confidence region, not an interval, which covered
the whole line, not only one point on the line, This pro-
cedure later turned out to be a special case of Scheffé's
simultaneocus confidence intervals (15). Wilks (21) gives a
proof of Scheffé's method for simultaneous confidence in-
tervals in his text, and it is his proof that is given in
this paper.

The basic result due to Scheffé is as follows:

Suppose u' = (ul,...,uk) is a k-dimensional random

variable having normal distribution
N(E_,AOZ)

where L' = (pl,pz,...,pk) is the vector of the means and

A is the variance-covariance matrix (non-singular) with

2

elements a, ,, and 0 is unknown. Let S = residual sum of

1j

squares, then S/o2 is a random variable indevendent of

(43,...,u,) vhich follows the chi-square distribution with

f df, Let FY K. £ be the 100y% point of the F-distribution
} 2 |




j

and let § = J(Slf)(kFY K f5 . We can thenstate the following
L B

theorem: If 6 is the set of all real vectors (cy,...,cy) i

where €ys+..5C are not all zero, the inequalities

k

ZTeoc,u, -5 L c c 2 c <Lcu + GJEI a c c 5.1 1

hold simultaneously with probability y for all (cl,...,ck)
in 6.

To prove the theorem one should first note that
(g-g)'A'l(g-g)/oz = (1/02) ¢ aij(ui-pi)(uj-uj) and $/c? are
independent random variabljg’having chi=square distribution
with k and f df, respectively, with aij being the elements
of A-l. Hence (£/kS) & aij(ui-pi)(uj-pj) has F-distribution.

i,J
Therefore

i3, . 2] .
Pr [ifja CH “1)(“3 “j) <6 ] Y (5.2)
where 52 = (kS/f) F .

Y.k, £

Next Wilks makes use of k-dimensional geometric con-

cepts and terminology. The set of points in the space of

(pl,...,p,) for which

130, - - 2
ifja (“1 ui)(uj uj) < $

‘ is the interior of a 100y% confidence ellipsoid for the {
true parameter point (pl,...,pk) centered at (ul,...,uk).

If one considers the set of points in the space of (ul,...,
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Hk) contained between all possible pairs of parallel (k-1)-
dimensional hyperplanes tangent to this ellipsoid then this
set of points constitutes the interior of the ellipsoid (5.2)
and the probability associated with this set is v.

Wilks then goes on to show that for any particular
choice of (cl,...,ck) in 6 the two parallel (k~l)=-dimensional
hyperplanes in the space of (pl,...,pk) having equations

L e =T cu + 6/ a c.c, (5.3)
PRI A A B PR R R R

are tangent to the ellipsoid

£ ald(u,-u, )@, ,~u.) = 82 (5.4)
1,30 AR

Any point (pl,...,pk) between the two hyperplanes
(5.3) satisfies (5.1). For the moment let Hy=Uy = Yy

Then (5.4) can be written as

2

bX aijyi.vj =67, (5.5)

i,j

and the equation of an arbitrary hyperplane in the snace of

.

L (yl,...,yk) can be written as

o rumbey

E cyvy = d. (5.6)

} Now one must find the two values of d for which the hyper-

plane (5.6) is tangent to the ellipsoid (5.5). Using a La-

grange multiplier A, one must find the stationary pnoints in

P
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the (yl,...,yk)-space of

0 = 5l - aijyiy)+§cy

i, j

Differentiating with respect to yj one finds

-\ aijy +¢ =0 or
1 i 1

v =(/A) L a c
i j i3

Substituting in (5.4) one finds

A = i(l/b){}fj aijcicj

From (5.8), (5.7), and (5.6) one finds

d = + 6«4};'.:] a“cic:J

(5.7)

(5.8)

Substituting this value of d in (5.6) and using the fact

that yi

= pi-u_, one obtains (5.3) as the equations of the
i

two parallel tangent hynerplanes for svecified (cl,...,ck).

This implies (5.1) and hence proves the theorem.

In this paper one uses Scheffé's method (S-Method)

of multiple comparison as stated in the preceding theorem

to the family [a+B(X-§2], corresponding tc the two-dimensional

space [c1a+c23], i.e, ¢, = 1 and cy = X-X. With this pro-

cedure one can compute confidence limits for any number of

different X values and say that all of the intervals simul-

taneously cover the corresvponding p

Y.X

. .

values for 100y% of




such random confidence regions.

The results from the S~-Method show that the same pro-
cedure, Procedure C on page 41, may be used to comnute these
similtaneous confidence limits as was used to compute the
non-simultaneous confidence limits with the following modifi-
cation: In step 4, the quantity J?F;:;:;:; is used instead
of t(1+y)/2,n-2°

These simultaneous confidence limits also define the
two branches of a hyperbola with the fitted line as the
diameter. As might be expected, for a given vy level, the
branches of the hyperbola for the simultaneous limits are

farther apart than those for the non-simultaneous limits,
C. Non-Simultaneous Tolerance Limits
1. Non-simultaneous (P)TL

Frequently, prediction intervals are also computed
for simple linear regression problems (11). The practical
use of the non-simultaneous (F)TL is rather restricted since
limits, like the non~simultaneous confidence limits, are not
independent of each other. The same is true here as was for
the confidence limits in that the concent of computing a
(P)TL on a single normal population is apolied repeatedly to

the Y data at different values of X.

The procedure for computing non~simultaneous (P)TL




is the same as °“rocedure C on page 41 for computing non-
simultaneous cornfidence limits with the following modifi-

cation: In sten 2 of the procedure the variance of Y is

-x)2
o2 {1 + 4+ (%-X) }

which takes into consideration the variance associated with

the additional observation. ‘
These non-simultaneous (P)TL also define the two

branches of a hyperbola with the fitted line as the diameter.

With these limits one can rightfully say only that for gne

future Xb value 100FP% of the Y values will on the average

lie within the given limits,

{
| 2., Non-simultaneous (y,P)TL

As mentioned before, the (P)TL is simply an estimate
of the interval and it does not give the experimenter any
assurance of including at least a desired proportion of the
population, The more desirable statement would include at
least 100P% of the population with a predetermined level of
confidence (y). Whenever textbooks consider tolerance limits
in simple regression, the non-simultaneous (y,P)TL are most
frequently mentioned (1), (6).

Procedure B on page 26 is used repeatedly for different

X values to compute the non-simultaneous (y,P)TL. Again,
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the loci of the tolerance limits may be plotted as a hyper-
bola with the fitted line as diameter. It must be re-
emphasized that these limits are not independent of each
other and hence do not hold for different values of X simul=-
taneously. Generally, these limits are farther apart than
the non~-simultaneous (P)TL when using a reasonable 100y% con-

fidence level.

D. Simultaneoug Tolerance Limits

1. Background

Lieberman (9) first considered the joint prediction
interval for the response at each of K separate values of the
independent variable when all K predictions must be based
upon the original fitted model. He describes three methods,
one exact and two approximate, For the exact method the
probability is 100y% that all K future observations fall
within their respective intervals, for the apnroximate
methods the probability is greater than 100y%.

These prediction regions apply only to a specified
number K of future responses at each of K separate X values.
However, when K is unknown and possibly arbitrarily large
these results are no longer valid. A solution to the problem
of arbitrary K is given in terms of simultaneous taolerance
limits (intervals) on the distribution of future observations.

In this paper two types of simultaneous tolerance intervals
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will be considered-simultaneous (FP)TL and simultaneous (y,P)
,rL.

2. Simultaneous (P)TL

In an attempt to overcome the limitation of the non-
simultaneous (P)TL on Y at a particular X,, simultaneous
(P)TL should perhaps be considered in simple linear re-
gression, With these simultancous (P)TL, one may say that
on the average 100P% of the Y population values are in-
cluded in each interval and that this statement may be
made for any number of different X values simultane-
ously.

The eomputing procedure for these simultaneous (P)TL
is analogous to the computation of simultaneous confidence

limits, Thus Procedure C on page 41, nrocedure for com-

o F LW T B e
PR

é. putation of non-simultaneous confidence limits, may be used

to compute the simultaneous (P)TL with the following two
modifications: 1In Step 2,

N -x)2
var(Y) = 02 [jl A (x° X) }
V.X n sz

d Step 4 .

and in Step 4, JQFY,Z,n-Z is used instead of € (14v)/2,n-2
As expected, for a given P and y, the branches of the
hyperbola for the simultaneous (P)TL are farther apart than

those for the non-simultaneous (P)TL.
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3. Simultaneous (y,F)TL

llach of the previously mentioned tolerance limits
procedures in simple linear regression had its limitation.
However, one can see that the limits for each procedure
were getting wider (unfortunately), but closer to what seems,
in most cases, to be in what the experimenter is actually
interested. At least, each successive procedure was better
than simply using non-simultaneous confidence limits and
pretending that one had limits which included a given per-
centage of the population at some chosen level of confidence.
Simultaneous (y,P)TL appear to be the proper limits for
most experimenters to use.

The approach used in the naper for the derivation of
the simultaneous (y,P)TL in regression is the simplest of
four approaches presented by Lieberman and Miller (10).

The authors made use of the Bonferroni inequality P[ABJ >
1 - P[Ac] - P[Bc], where AS and B® denote the complement of
A and B, respectively. 1In this approach they employed the
inequality to combine simultaneous confidence intervals on
the regression means, as obtained by Scheffé, and the con-
fidence interval for the standard deviation to construct a
two-sided simultaneous (y,P)TL. The two-sided confidence

region for the regression line is obtained from




. _ ~ % 3
r an (-R)=a-b (=X} s (2F (1,172, 2, n-2’ L+ .st;lzﬂ_ ,

for all X} = (1+v)/2. (5.9)

An upper bound on ¢ is obtained from a one-sided chi-square

confidence interval:

Pr E <s [ n-2 }% J= Ly (5.10)
Y-X| 2 2
A(l-Y)/z ’n-z

is the (l-v)/2 percentage point of the

where 2 .
X(1-y)/2 ,n=2
chi-gsquare distribution for n-2 df, With use of the
Bonferroni inequality the confidence statements (5.9) and
(5.10) are combined into a joint confidence statement with

probability greater than or equal to v as:

rr [|a+s(x-7c) + 2 g=a-b(X=-X) < sY.x[(ZF ]

(1+Y)/2,2,n-2)
———e
ﬂ/% + 1?:%1. + Z(1+P)/2 [ n-2 }%) for all x,é]a Y

(1L+F)/2

L2
A(1=y)/2,n=2

where Z(]__’.P)/2 is the (1+P)/2 percentage point of the stand-
ard normal distribution,

Lieberman and :iller describe the simultaneous (y,P)
TL in simple regression, as follows: "If for a single re-
gression line[ §=a+b(xo-i)] ol.e asserts that the proportion
of future observations falling within the given tolerance

limits (for anv X), is at least P, and similar statements




are made repeatedly for different regression lines Y =[a+
b(Xi-i)], then for 100vy% of the different regression lines
the statements will be correct". One may reword Lieberman
and Miller's quotation as follows in order to give an
analogous statement for the (y,P)TL in Section IIl: "If

for a single mean, ?, one asserts that the proportion of
future observations falling within the given tolerance limits
is at least P, and similar statements are revpecatedly for
different estimates of the mean, then for 100y% of the
different estimates the statements will be correct. '

The authors did not appear to have any strong pre-
ference for any one of their four procedures. They then go
on to say, "The widthsof these simultaneous limits (talking
about the four procedures in general) varv from slightly
larger to about twice as large as the non-simultaneous in-
tervals. This gives a rough indication of the price the ex-
perimenter will have to pay, or should be paying, for simul-
taneity", Many experimenters may feel that these limits
will be too large to be of any practical benefit. In these
situations, depending on the natﬁre of the data, the ex-
perimenter should settle for smaller P and/or smaller y
levels. Smaller or more desirable limits are not necessarilv
justified when obtained by a procedure which should not
have been used or a procedure which gives less precise in-

formation.
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The computation of the simultaneous (v,P)TL of the

form Y + k'sv X in simple linear regression is given in Pro-

cedure D (fixed central proportion P for all X's):
Procedure D

1. Y=Y+ b(X,-X)
2. ¥ =02 (4
var(Y) OY-X( )

)2
1 -X
where d = 5 + Ko=X)”

Ssx2

3. __ [sy? - (Sxy)¢/sx*
BYOX n'2

4, Decide on reasonable levels of P and vy

5. K= VTR (4y)/2,2,n-2 & Ly SOOI 0 o

' + k's
Y-X

7. Steps (1),(2),(5), and (6) should be repeated for

(o)

several X values (covering the range of X's). The
loci of the limits may be plotted as a hyperbola with

the fitted line as diameter,.
E. ion ough the n

In some situations the relationship between Y and X
is such that when X=0 also Y=0, Thus, one is interested in
passing the regression line through the origin, and the re-

quired equation is of the type, u =X, As in the previous

Y.X
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case, it is assumed that deviations from the regression line
are normally distributed with a common variance, Of course,
the parameter estimates for this model are not the same as
for the previous model, pY.x = a + BX.

The same procedure (Procedure C) for the computation
of non-gsimultaneous confidence limits may be applied to this

model as was used for the previous model using the different

estimates:
1. £ XYy
Y = bX where b = ——
£x?
i
2
2. Var(? ) = o2 Xo
° Y% zx?
i

- T VIR Ay )
3. s! <" J&Yi ((2X, ¥ )*/2X])

with n-1 degrees of freedom (f) 9 L
4, Confid limits f =Y+t —=|s!
onfidence limits for “Y-Xo + (1+Y)/2’f[zx2 v.X

For X =0 (the origin), the above procedure shows a
confidence interval of ). Initially one may feel that this

is incorrect. However, for this point there is no sampling




o

Pt X My S

variation, the regression equation was "forced" through this
point. It is easy to see that these confidence intervals
increase as xo increases. This "fan" appearance of the con-
fidence limits is unlike the hyperbolic confidence limits ob-
tained for the previous model.

The remainder of the confidence and tolerance in-

tervals can be computed for = gX using the basic

Hy.x
quantities given in the procedure on the previous page.

i




VI. NUMERICAL EXAMPLE

A summary of the computing formulas for the various
confidence and tolerance limits in simple linear regression
are given in Table 2. The values from the various distri-
butions have all been given in terms of the FP-distribution
in this table.

A numerical example has been presented so that the
reader can appreciate to a fuller extent the various com=-
putational procedures, and can graphically see the difference
(if any) in the interval widths for the various procedures,

The example used in this paver is the same as the
numerical example presented in Lieberman & Miller's paper
using 15 hypothetical pairs of values on speed of a missile
(Y) and orifice opening (X). The underlying relationship

between these two variables is of the form
Ixpected speed (miles/hr) = a + B orifice ovening (inches).

The necessary quantities from the data for the desired com-
putations were [as given in (10)]:
= 1.3531

5219.3

£(x-X} = .01196

= «19,041.9 + 17930X

130.5 with £ = 13

15

°H g’N <0 el
[! il 1]
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TABLE 2. COMPUTATIONAL PROCEDURES FOR VARIOUS TYPES OF
CONFIDENCE AND TOLERANCE LIMITS IN SIMPLE LINEAR
REGRESSTION

Step {
Souree " !| 1 2 ?

Non-simultaneous §=a+bxo OY,X n Sx
confidence limits
(Procedure C) =2 (d)

Y-X

Simultaneous " " "
confidence limits

Non-simultaneous 2
(P)TL " OY (1+d) 1 "

Simultaneous "
(P)TL

lon-simultaneous 2
(y,P)TL " ot (d) "
(Procedure B) Y-X

Simulraneous
(Y,P)TL " " "
(Frocedure D)

Notes: a = Y-bX

sy? = py? - (&Y)?




(Table 2 continued.)

4;‘
i Step # 4 5 i

Source g\
Non-simultaneous |, .1
confidence limits |Y+/F Jd s !
(Procedure C) Y,l,n=2 Y.X

‘1
Simultaneous Sa A 5
confidence limits Y:“/2["Y,2,1'1-2 /d sY-X

Non-simultaneous (g, =
(P)TL Y4/Fp 1, n-p W1+d 8

Y.X

Simultaneous S i

(P)TL Y&/2Fp 5 nep Y1+ 8

- 2

Non~simultaneous k=JF-___[1 + 8 (ZFPA;,m 3)d } . ﬁ

(v,P)TL P,1,e 2 24 Y4ks

(Procedure B) Y-X

* JFYA”AB-Z

Simultaneous k' = J2F<1+ /2.2 ,n=2 Ja “

(v,P)TL Y2/ &42,n= Y4k's

(Procedure D) +JF;’1,wF(1+y)/2’w,n-2 Y-X

Note: F*'Ui’vé is the A percentage point of the F dis-
tribution with Ul and U, degrees of freedom.




It was decided that ™ = ,95 and v = .95 were reasonable
values to use. Figure 3 shows a tolerance band for each of
the six types of limits considered in regression when using
P=,95, y = ,95 and n = 15. Generally all tolerance bands
are wide and the price for simultaneity appears high. The
cause of the wide limits is two-fold. One cause is that s
(basic standard deviation) is perhaps larger than what one
would observe under a carefully controlled situation. The
second cause of the wide tolerance limits is that either the
level of cenfidence (y=.95) or the proportion of the popu-
lation to be included (F=.95) or both were chosen too large
in respect to only the 15 pairs of observations used in the
sample. In other words, one should pay a high price (large
limits) if it is expected that a sample size of 15 should
supply the basic information for perhaps hundreds of future
predictions.

In order to explore the effect of sample size, it
was decided to use the same data under the condition that
it were based on 150 pairs of observations rather than only
15 (essentially 10 vairs of observations at each point).
Figure 4 shows a band for each of the six types of limits
using P = .95, v = .95 and n= 150, From these data one sees
a8 clear distinction between confidence and tolerance bands.
The price of simultaneity has become less for both the con-

fidence and the tolerance limits. The non-simultaneous
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Figure 3. Six Types of Limits for a Simple Linear Re-
gression Problem Using y=.95,P=.95, and N=15.
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(95%) TL do not differ much from the similtaneous (95%)TL.

The same is true for the simultaneous and non-simultaneous
(95%,95%)TL.

In order to see what role the chosen level of v plays,
it was decided to compute a tolerance band for each of the
six types of limits when using P = .95, v = .75 and n = 15.
See Figure 5. All limits involving y are about 80% as wide
as the limits when using P=,95, y=.95 and n= 15. Of course,
both (95%TL) are the same as in Figure 3.

Figure 6 shows the limits for a sample size of 150,
P=,95 and y=.75. Figures 4 and 6 (n=150 for both) are nearly
identical. This shows that for a reasonably large samnle
size the chosen level of y has very little influence on the
width of the confidence or tolerance limits.

Many of the observations made from the sample problem
could also be made by comparing the F-ratio values used in

the computing formulas in Table 2.
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VII. R:ELATED MATERIAL NOT COVEZRLD IN THE PAPER

The material in this paper was limited to two-sided
confidence and tolerance limits apolied to simple means and
simple linear regression lines. Other areas of major interest
are:

1. One=-sided confidence and tolerance limits.

2. Application of the limits to multiple (fixed X) linear
regression problems,

3. Application of the limits to simple linear regression
lines where X is measured with error.

4. The simplest of Lieberman & !filler's procedure on
simultaneous "P% TL with y%'" was chosen for this
paper. Further comparisons between the four pro-
cedures under a varietvy of conditions would be of
interest.

5. What price, if any, does the investigator have to pay
to be able to make tolerance statements at various
values of X not necessarily at the same level P, but
still have one over-all y confidence level compared
to a fixed P level statement as given in this report
with the same over-all vy level of confidence.

6. Inverse prediction intervals whereby an interval of
X values is found for which the additional Y obs.

could be associated, and one 1is 100y% confident that




at least 100P% of these intervals will include the
true associated X, value (population X,).

7. Nonparametric confidence and tolerance limits.
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